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Abstract
We consider a generalization of the vicious walker problem in which N random
walkers in Rd are grouped into p families. Using field-theoretic renormalization
group methods we calculate the asymptotic behaviour of the probability that
no pairs of walkers from different families have met up to time t. For d > 2,
this is constant, but for d < 2 it decays as a power t−α , which we compute to
O(ε2) in an expansion in ε = 2 − d . The second-order term depends on the
ratios of the diffusivities of the different families. In two dimensions, we find
a logarithmic decay (ln t)−ᾱ and compute ᾱ exactly.

PACS numbers: 05.40.−a, 02.50.Ey, 64.60.Ak, 05.10.Cc

1. Introduction

Consider the following problem: N random walkers set off from the vicinity of the origin,
in d-dimensional Euclidean space, at time t = 0. They are divided into p different families:
the number of walkers in the j th family is nj , so that N = ∑p

j=1 nj . Within a particular
family, walkers are indifferent to each other: their paths may cross. However, each family
behaves viciously towards all the others: if two walkers from different families meet, both
are annihilated. We may ask many different questions about this problem, but a fundamental
quantity is the probability P({nj }; t) that all the walkers have still survived up to time t.
Equivalently, we may consider the ensemble of N independent random walks: P({nj }; t)

is the fraction of these in which no walkers of different families have intersected up to
time t.

For a discrete time process on a lattice, if rνj

j (t) is the position at time t of the νj th walker
of the j th family, then P({nj }; t) is the expected value of the indicator function

t∏
t ′=0

∏
1�j<k�p

nj∏
νj =1

nk∏
νk=1

(
1 − δ

(
r
νj

j (t ′), rνk

k (t ′)
))

. (1.1)
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This problem is of interest for several reasons. It generalizes a number of cases:

1. nj = 1 (1 � j � p) corresponds to vicious walkers, a term first introduced by Fisher [1].
It has been studied using ε-expansion methods [2, 3] similar to those of the present paper.
The survival probability is known exactly for d = 1 in the case when all walkers have
the same diffusion constants: it decays as a power t−p(p−1)/4 [1, 4, 5]. These methods
rely essentially on a fermionic description of the problem [1, 6]. Krattenthaler et al [4]
introduced the method of the Schur functions, and Katori and Tanemura [5] developed
this and discussed the relation with the random matrix theory. These methods do not
appear to extend to the case when the diffusion constants are different. Results in this
case have been reported for p = 2 [1].

2. The case p = 2, with n1 = n and n2 = 1, has been studied by Krapivsky and Redner
[7–9] as a model of n predators (‘lions’) hunting a prey (‘lamb’). They were able to obtain
exact results for the asymptotic behaviour of the survival probability, again in d = 1,
for the cases n = 1, 2 and arbitrary diffusion constants. For general n, the exponent is
related to the smallest eigenvalue of a Dirichlet problem in a certain (n − 1)-dimensional
compact region and is probably not expressible analytically, but for large n these authors
were able to estimate its behaviour. The ‘lion–lamb’ problem for d = 1 is related to a
version of the ‘ballot problem’ in which it is required to know the probability that one
candidate in a ballot remains ahead of the n others at all stages in the poll. Exact results
are known only for n � 2 [10].

3. The ‘lion–lamb’ problem has another interpretation, in terms of multiscaling: if we first
regard the trajectory � of the lamb as fixed, and if p�(t) is the probability that it has not
been met by a single lion, then

P(n, 1; t) = 〈p�(t)
n〉� (1.2)

where the average is over all the realizations of �. The fact that P(n, 1; t) decays with t
with an exponent which is not simply linear in n is symptomatic of multiscaling in this
problem.

4. More generally, we can regard P(n1, n2, . . . , np; t) as being the average of the n1th power
of the survival probability of a single walker of family 1, in the presence of (n2, . . . , np)

walkers of the (p − 1) other families.
5. Our problem has a strong resemblance to that of the intersection probabilities of Brownian

paths. In this case, one studies the ensemble of N random walks in d dimensions each of
which begin a distance O(a) from the origin and which arrive on a hypersphere of radius
r = R � a before they cross r = a, irrespective of how long this takes. Once again
the walkers are divided into families, and in this case one is interested in the probability
P̃ ({nj }, R, a) that the paths of walkers of different families do not intersect. Thus, instead
of (1.1), P̃ is the expected value of∏

1�j<k�p

nj∏
νj =1

nk∏
νk=1

∞∏
t ′=0

∞∏
t ′′=0

(
1 − δ

(
rνj

j (t ′), rνk

k (t ′′)
))

(1.3)

and it is supposed to decay as (R/a)−α̃ as R/a → ∞, where α̃ depends nontrivially on the
{nj }. This problem is trivial in d = 1, and turns out to have an upper critical dimension
d = 4, below which an ε-expansion is possible [11]. For d = 2 an exact formula for
α̃({nj }) has been derived [12, 13], by exploiting the conformal invariance of the problem.

Given these remarks, it seems important to investigate the general case described in the
opening paragraph. As far as we know, the fermionic methods used to attack the vicious
walker problem for d = 1 do not extend to this case. We have, therefore, employed a
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renormalization group (RG) method, which yields, for d < 2, results for the exponent α({nj })
of the power-law decay of P({nj }; t) as a power series in ε ≡ 2 − d . By using field-theoretic
methods, the calculation is streamlined, and, once the formalism is set up, involves relatively
little explicit calculation. We have carried this computation through O(ε2), and for arbitrary
diffusion constants of each family. It would be tedious, but not difficult, to carry it further, as
the actual Feynman integrals are elementary. We also show that in two dimensions P({nj }; t)

decays as a universal power of ln t .
The paper is organized as follows: in section 2, for completeness, we collect all our results

and show how they reduce in the above-mentioned special cases. In section 3 we set up the
field-theoretic formulation of the problem, then in the next section carry out the RG analysis.
Section 5 contains a summary and further remarks. Several of the detailed calculations are
relegated to appendices.

2. Results

Let p be the number of families, nj be the number of walkers in the j th family and Dj be their
diffusivity. Let P({nj }; t) be the survival probability

P({nj }; t) = E

 t∏
t ′=0

∏
1�j<k�p

nj∏
νj =1

nk∏
νk=1

(
1 − δ

(
r
νj

j (t ′), rνk

k (t ′)
)) . (2.1)

2.1. d > 2

In this case there is a finite probability that any pair of walkers will never meet. As a result,
P({nj }; t) approaches a non-universal constant value less than 1, with leading power-law
corrections of the form t (2−d)/2.

2.2. d < 2

P({nj }; t) ∼ const t−α({nj }) as t → ∞ (2.2)

where, with ε = 2 − d ,

α = F1ε + F2ε
2 + O(ε3) (2.3)

with

F1 = 1

2

∑
1�j1<j2�p

nj1nj2 = 1

4

(
C2

1 − C2
)

F2 = 1

2

∑
1�j1<j2<j3�p

nj1nj2nj3

{
ln R

(
Dj1 ,Dj2 ,Dj3

)
+ ln R

(
Dj2 ,Dj3 ,Dj1

)
+ ln R

(
Dj3 ,Dj1 ,Dj2

)}
+

1

4

∑
1�j1<j2�p

nj1nj2

{(
nj1 − 1

)
ln R

(
Dj1 ,Dj2 ,Dj1

)
+
(
nj2 − 1

)
ln R

(
Dj2 ,Dj1 ,Dj2

)}
= 1

2

∑
1�j1<j2<j3�p

nj1nj2nj3 ln

( (
Dj1Dj2 + Dj1Dj3 + Dj2Dj3

)3(
Dj1 + Dj2

)2(
Dj2 + Dj3

)2(
Dj3 + Dj1

)2
)
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+
1

4

∑
1�j1<j2�p

nj1nj2

{
nj1 ln

(
Dj1

(
Dj1 + 2Dj2

)(
Dj1 + Dj2

)2
)

+ nj2 ln

((
2Dj1 + Dj2

)
Dj2(

Dj1 + Dj2

)2
)}

− 1

4

∑
1�j1�j2<p

nj1nj2 ln

(
Dj1Dj2

(
Dj1 + 2Dj2

)(
2Dj1 + Dj2

)(
Dj1 + Dj2

)4
)

(2.4)

where

Ck =
p∑

j=1

nk
j k = 1, 2, . . . (2.5)

and

R(Dj ,Dk,D�) = DjDk + DjD� + DkD�

(Dj + Dk)(Dk + D�)
. (2.6)

From this may be deduced various special cases.

2.2.1. Equal diffusion constants. Assume that Dj = D for all j = 1, 2, . . . , p. Then

α = F1ε + F2 ln 3
4ε2 + O(ε3) (2.7)

with

F1 = 1

2

∑
1�j1<j2�p

nj1nj2 = 1

4

(
C2

1 − C2
)

F2 = 3

2

∑
1�j1<j2<j3�p

nj1nj2nj3 +
1

4

∑
1�j1<j2�p

nj1nj2

(
nj1 + nj2

)− 1

2

∑
1�j1<j2�p

nj1nj2

= 1

4

(
C3

1 − C2
1 − 2C1C2 + C2 + C3

)
. (2.8)

Note that these are expressed in terms of symmetric polynomials in the {nj }. This in fact
holds to all orders in ε.

2.2.2. Vicious walkers with unequal diffusion constants. When

nj =
{

1 for 1 � j � p

0 otherwise
(2.9)

α should be equal to the survival exponent ψS,p of the vicious walkers. In this case Ck = p

for k = 1, 2, . . . and the result (2.3) gives

ψS,p = α|nj =1(1�j�p),nk=0(k�p+1)

= 1

2

(
p

2

)
ε +

1

2

∑
1�j1<j2<j3�p

ln

( (
Dj1Dj2 + Dj1Dj3 + Dj2Dj3

)3(
Dj1 + Dj2

)2(
Dj2 + Dj3

)2(
Dj3 + Dj1

)2
)

ε2

+O(ε3). (2.10)

2.2.3. Vicious walkers with equal diffusion constants. The result (2.7) gives

ψS,p = α|nj=1(1�j�p),nk=0(k�p+1)

= 1

2

(
p

2

)
ε +

3

2

(
p

3

)
ln

3

4
ε2 + O(ε3)

= 1

4
p(p − 1)ε +

1

4
p(p − 1)(p − 2) ln

3

4
ε2 + O(ε3). (2.11)
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This agrees with the result reported as equation (5.2), with equation (3.13) in Mukherji and
Bhattacharjee [2] (see also [3]).

It has been proved that [1, 4, 5]

ψS,p = 1
4p(p − 1) for d = 1 (i.e. ε = 1). (2.12)

Note that although this exact result agrees with that from the first-order ε-expansion (2.11)
on setting ε = 1, this is probably fortuitous, as, in the case of unequal diffusivities the exact
result depends on their ratio, while the first-order term in (2.10) does not.

2.2.4. ‘Lion–lamb’ problem with unequal diffusion constants. The ‘n lions and one lamb’
problem studied by Krapivsky and Redner [7, 8] is a special case of the present model in which

nj =


n for j = 1
1 for j = 2
0 otherwise.

(2.13)

In this case Ck = 1 + nk for k = 1, 2, . . . and the result (2.3) gives

βn = α|n1=n,n2=1,nj =0(j�3)

= 1

2
nε +

1

4
n(n − 1) ln

(
1 + 2η

(1 + η)2

)
ε2 + O(ε3) (2.14)

where η = D2/D1. Redner and Krapivsky [8] reported the exact solution for n = 2 in d = 1
(i.e. ε = 1),

βexact
2 (η) =

[
2 − 2

π
cos−1 η

1 + η

]−1

. (2.15)

It was shown that βexact(η) is monotonically decreasing in η and

βexact
2 (0) = 1 βexact

2 (1) = 3
4 lim

η→∞ βexact
2 (η) = 1

2 . (2.16)

If we neglect O(ε3) and set n = 2, ε = 1 in (2.14), we have

β
approx
2 (η) = 1 +

1

2
ln

(
1 + 2η

(1 + η)2

)
which is monotonically decreasing in η and

β
approx
2 (0) = 1 β

approx
2 (1) = 1 + 1

2 ln 3
4 	 0.856 lim

η→∞ β
approx
2 (η) = −∞.

2.3. Two dimensions

In this case, there is a logarithmic decay with universal exponent:

P({nj }; t) ∼ const (ln t)−ᾱ

(
1 + O

(
1

ln t

))
(2.17)

where

ᾱ =
∑

1�j1<j2�p

nj1nj2 . (2.18)

Note that this is independent of the Dj (as long as no pair of them both vanish): the dependence
shows up only in the prefactor and the non-leading terms.
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3. Field-theoretic formulation

In this section, we set up the general problem as a continuum field theory, so that the powerful
techniques of the field-theoretic RG may be applied. The general method for formulating such
stochastic particle systems as field theories, as originally proposed by Doi [14] and Peliti [15],
has been described at length elsewhere [16], and we shall only summarize how this is applied
in the case of interest.

Initially, the problem is formulated on a lattice, for example Zd , the sites of which are
labelled by a vector r. The microstate of the system at a given time is specified by occupation
numbers {mj(r)}, which specify that there are mj(r) walkers of family j at the site r. Note
that we treat walkers of the same family as identical particles: this makes no difference in the
problem of interest. With each microstate is associated a vector in a Fock space F , built by
applying raising operators to the vacuum, or empty state, |0〉:

|{mj(r)}〉 =
∏
r∈Zd

p∏
j=1

a
†
j (r)

mj (r)|0〉 (3.1)

where [aj(r), a
†
k(r

′)] = δjkδrr′ , and aj (r)|0〉 = 0. Let p({mj(r)}; t) be the probability of
finding the system in this microstate at time t, and define the state ∈ F

|
(t)〉 ≡
∑

{mj (r)}
p({mj(r)}; t)|{mj(r)}〉. (3.2)

Then the master equation, which is linear equation describing the time evolution of the
probabilities p({mj(r)}; t), is equivalent to the Schrödinger-like equation

d|
(t)〉/dt = −Ĥ |
(t)〉 (3.3)

where Ĥ : F → F may be expressed explicitly in terms of the raising and lowering operators.
For the case of independent random walks in continuous time,

Ĥ = Ĥ 0 =
p∑

j=1

(Dj/b
2)
∑
(r,r′)

(
a
†
j (r) − a

†
j (r

′)
)(

aj (r) − aj (r′)
)

(3.4)

where b is the lattice spacing, and the sum is over nearest neighbour pairs of sites (r, r′).
The probability of finding the walkers at sites r

νj

j at time t (where 1 � νj � nj with
1 � j � p) is then given by

〈0|
p∏

j=1

nj∏
νj =1

aj

(
r
νj

j

)
e−tĤ 0 |
(0)〉. (3.5)

Of course, when this is summed over all the r
νj

j , it gives unity.
Before considering how to implement the non-intersection constraint, let us first discuss

the continuum limit and the path integral representation. In this non-interacting case, the
continuum limit may be taken rigourously. The raising and lowering operators go over into
(distribution-valued)field operators satisfying

[
φj (r), φ

†
k(r

′)
] = δjkδ(r−r′), and the generator

of time evolution becomes

Ĥ 0 =
∫  p∑

j=1

Dj

(∇φ
†
j

)
(∇φj)

 ddr. (3.6)

Since the walkers are all supposed to begin in the vicinity of the origin at t = 0, that is a finite
number of lattice spacings away, in the continuum limit b → 0

|
(0)〉 = O†|0〉 ≡
p∏

j=1

(
φ
†
j (0)

)nj |0〉. (3.7)
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The path integral representation is derived [16] by breaking the time interval (0, t)

into slices of length �t , so that the time-evolution operator e−tĤ 0 is the product of factors
e−�tĤ 0 ≈ 1 − �tĤ 0, and inserting a complete set of coherent states at each time slice. This
has the effect of replacing the operators φj(r) and φ

†
j (r) by time-dependent c-number fields

φj(t, r) and φ∗
j (t, r), respectively. After taking the limit �t → 0, the matrix element (3.5)

becomes a functional integral∫ p∏
j=1

Dφ∗
jDφj

p∏
j=1

nj∏
νj =1

φ
(
t, rνj

j

)
O∗(0, 0) e−S0 (3.8)

where

S0 =
∫  p∑

j=1

φ∗∂tφ −
p∑

j=1

Dj(∇φ∗
j )(∇φj )

 dt ddr (3.9)

and O∗ =∏p

j=1 φ∗
j
nj .

3.1. Interactions

We now discuss how to incorporate the constraint that walkers of different families should not
meet. Rather than insert the indicator function (1.1) into the path integral, it more convenient
to consider a slightly more general problem in which, before taking the limits b → 0 and
�t → 0, each set of trajectories is weighted by a factor

t∏
t ′=0

∏
r

exp

−
∑

1�j1<j2�p

λj1j2(b
d/�t)mj1(t

′, r)mj2(t
′, r)

 (3.10)

where the λj1j2(b
d/�t) > 0 are a set of dimensionless parameters (the factors of b and

�t are inserted to make the continuum limit simpler). The case of strict non-intersection
corresponds to the limit λj1j2 → ∞. However, we shall show that, for d � 2, the leading
behaviour is independent of the precise value of these parameters (as long as they are all
strictly positive) and, moreover, the RG fixed point, at which non-leading corrections to the
asymptotic behaviour disappear, corresponds to the limit of infinite λj1j2 .

In the formal continuum limit, this corresponds to a modification of the action in the path
integral

S = S0 +
∑

1�j1<j2�p

λj1j2

∫
φ∗

j1
φ∗

j2
φj1φj2 dt ddr. (3.11)

3.2. Feynman rules

The Feynman rules for this theory are very simple [16] and are illustrated in figure 1. We
denote averages and correlations with respect to the bare action S0 by the subscript 0: averages
with respect to the full action S are denoted by 〈·〉.

• The Fourier–Laplace transform of the bare propagator

G
(1,1)
j (s, k)0 =

∫ ∞

0
dt

∫
ddr e−st eik·r〈φj (t, r)φ∗

j (0, 0)〉0

= (s + Djk
2)−1 (3.12)

is represented by a line directed towards increasing time (conventionally, right-to-left).
In the (t, k) representation the bare propagator is simply e−Dj k

2t ,
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(s + D k  )2

−λ

-1
j

jj
1 1

j j
2 2

j
1

j
2

Figure 1. Feynman rules for the interacting theory (3.11). Time always flows towards the left.

• the interaction (−λj1j2) is represented by a vertex with one incoming and one outgoing
pair of lines each of type j1 and j2, and

• as usual, wave number k and (imaginary) frequency s are conserved at the vertices, and
internal loop integrations

∫
(ds/2π i) and

∫
(ddk/(2π)d) are carried out.

3.3. Renormalization and operator product expansion

The survival probability is now given by the correlation function

GO(t) =
∫ p∏

j=1

nj∏
νj =1

〈
φj

(
t, r

νj

j

)
O∗(0, 0)

〉
(3.13)

evaluated with the weight e−S .
However, this does not exist in the formal continuum limit, because the perturbative

Feynman diagram expansion of G contains ultraviolet (short-distance or short-time)
divergences. Physically this is because two walkers, having interacted once, are, in the
continuum limit, likely to interact an infinite number of times as �t → 0. This divergence
may be regulated, either by imposing an explicit cut-off |k| < � in the Feynman integrals,
or, more easily, by dimensional regulation. For d � 2 this field theory is renormalizable: the
singular dependence on the regulator may be absorbed into a finite number of parameters.
In the case of the theory of interest, this procedure is particularly simple [16]: no
renormalization of the field φ(t, r) nor of the diffusion constants is required, only a simple
renormalization of the coupling constants λjj ′ , which can be computed exactly to all orders.
The lack of field and diffusion constant renormalization holds mathematically because there
are no loop corrections to the propagators. Physically it is because an isolated walker does
not interact, even with itself, in the absence of any branching processes. When the coupling
constant renormalization is done, all correlation functions of products of φ and φ∗, at distinct
spacetime points, have a finite limit as the regulator is removed, when expressed in terms of
the renormalized couplings. The fact that the renormalized theory must be defined at some
arbitrary scale then leads to RG equations.

However, this procedure is not sufficient to render finite correlation functions involving
so-called composite operators such as O∗ = ∏p

j=1 φ∗
j (0, 0)nj . Physically, this is because if

the walkers all begin at exactly the same point, they will all annihilate each other immediately!
In order to obtain finite renormalized correlation functions, it is first necessary to point-split
the fields:

p∏
j=1

φ∗
j (0, 0)nj −→

p∏
j=1

φ∗
j (0, rj )

nj . (3.14)

(Note that it is not necessary to split the starting points of walkers of the same family, since
they do not interact.) Now consider a correlation function of this product with an arbitrary
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1

1

3

1

1

22

3

O O

Figure 2. Some of the diagrams contributing to the survival probability GO. The case
n1 = 2, n2 = 1, n3 = 1 is shown as an illustration. The one-loop diagram shows an interaction
between a walker of family 1 with one of family 2 and is proportional to λ12.

product A of fields whose time arguments are all strictly positive:〈
A

p∏
j=1

φ∗
j (0, rj )

nj

〉
. (3.15)

In the cut-off theory, we could simply make a Taylor expansion of this in powers of the rj .
This would have the form

〈AO∗(0, 0)〉 +
∑

n

Cn({rj })〈AO∗
n(0, 0)〉 (3.16)

where the summation is taken over all possible derivatives {O∗
n} of

∏
j φ∗

j (0, rj )
nj with respect

to the {rj }. On the basis of dimensional analysis, the first term gives the leading behaviour for
GO(t) as t → ∞, at least at d = 2. In the interacting theory, however, each term in (3.16) has
to be renormalized separately. As a result〈

A

p∏
j=1

φ∗
j (0, rj )

nj

〉
= Z−1

O 〈AO∗
R〉 +

∑
n

Z−1
On

Cn,R({rj })〈AO∗
n,R〉 (3.17)

where all the correlation functions are finite as the regulator is removed. Since each of the
{On,R} may acquire a nontrivial anomalous dimension through this procedure, the renormalized
functions Cn,R({rj }) have a nontrivial dependence on their arguments. The important feature
of (3.17) is that the renormalization constants ZO, ZOn

are independent of A. This we may
write as the operator product expansion (OPE)

p∏
j=1

φ∗
j (0, rj )

nj = Z−1
O O∗

R(0, 0) +
∑

n

Z−1
On

Cn,R({rj })O∗
n,R(0, 0) (3.18)

where the OPE functions Cn,R({rj }), etc are in general nontrivial.
Each term in the OPE (3.18), when substituted into G, will give rise to nontrivial power-

law dependence on t for d � 2. However, since in the non-interacting theory we know that
only the first term is important as t → ∞, we shall assume that this remains true for sufficiently
small ε. Further discussion of this point will be postponed to section 5.

3.4. d > 2

In the absence of any interactions, the survival probability GO(t) = 1, as can be seen by
evaluating the first diagram in the expansion shown in figure 2 with all the wave numbers q

νj

j

set to 0. For d > 2, the higher-order terms give contributions which correct this constant, as
well as terms which are subleading as t → ∞. For example, a typical one-loop diagram like
that in figure 2 is proportional to

−λj1j2

∫ t

0
dt ′
∫

ddk e−(Dj1 +Dj2 )k2t ′ ∝ −
∫

1 − e−(Dj1 +Dj2 )k2t

k2
ddk. (3.19)

This integral diverges at large |k| for d � 2, a consequence of taking the naive continuum
limit. If we impose a cut-off |k| < � = O(b), the leading term behaves as �d−2, with a
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non-universal coefficient, while the remainder is finite as � → ∞ and behaves as t−(d−2)/2.
The non-universal constant term corresponds to a finite probability that the walkers annihilate
at short times, before escaping each other. This behaviour persists at higher orders in the
interactions.

For d � 2, however, each successive term in the bare perturbation grows as a larger and
larger positive power of t, and it is necessary to resum the expansion. The RG provides a
consistent framework within which to carry this out.

4. Renormalization group analysis

4.1. Coupling constant renormalization

As usual, the renormalized couplings λRjk are defined as the values at the normalization point
of the irreducible vertex functions �

(2,2)

jk ((s′
j , q′

j ), (s
′
k, q′

k); (sj , qj ), (sk, qk)), which are the
truncated Laplace–Fourier transforms of 〈φj (t

′
j , r′

j )φj (t
′
k, r′

k)φ
∗
j (tj , rj )φ

∗
j (tk, rk)〉. (There is

no field renormalization in this theory.) It is convenient to choose the normalization point as

s′
j = s′

k = sj = sk = σ �= 0 q′
j = q′

k = qj = qk = 0. (4.1)

This class of theories has the special property that the renormalized coupling constants may
be computed to all orders [16]. The calculation is summarized in appendix A. The result is

λRjk = λjk

1 + (bd/ε)λjk((Dj + Dk)/2)−d/2(2σ)−ε/2
(4.2)

where

bd ≡ 2 − d

23d/2πd/2
�(1 − d/2) = 1/(4π) + O(ε). (4.3)

It is convenient to define the dimensionless renormalized couplings as

gRjk ≡ λRjk

(
2

Dj + Dk

)d/2

(2σ)−ε/2. (4.4)

As will be seen, these are the natural expansion parameters for the renormalized perturbation
expansion.

4.2. Renormalization of O∗

As discussed in the previous section, we are interested in computing the asymptotic behaviour
at large t of

GO(t) =
∫ p∏

j=1

nj∏
νj =1

ddr
νj

j

〈
φj

(
t, r

νj

j

)
O∗(0, 0)

〉
(4.5)

in the regularized bare theory, where O∗ = ∏p

j=1(φ
∗
j )

nj . However, for the purposes of
renormalizing O∗, it is more convenient to choose the time arguments of the fields φj to be
independent, and to consider the Laplace transform with respect to these times. Thus we
define

GO
({

t
νj

j

}) =
∫ p∏

j=1

nj∏
νj =1

ddr
νj

j

〈
φj

(
t
νj

j , r
νj

j

)
O∗(0, 0)

〉
(4.6)

and

G̃O
({

s
νj

j

}) =
∫ ∞

0

p∏
j=1

nj∏
νj =1

{
dt

νj

j e−s
νj
j t

νj
j

}
GO
({

t
νj

j

})
. (4.7)



Families of vicious walkers 619

From this we may define the irreducible vertex function [17], by truncating the external
propagators:

�O
({

s
νj

j

}; {λjk}
) = G̃O

({
s
νj

j

})
∏p

j=1

∏nj

νj =1

(
s
νj

j

)−1 . (4.8)

The renormalized vertex function is

�OR

({
s
νj

j

}; {gRjk}, σ
) = ZO({λjk}, σ )�O

({
s
νj

j

}; {λjk}
)

(4.9)

where ZO is fixed by the normalization condition

�OR

({
s
νj

j

}; {gRjk}, σ
)∣∣

s1
1=s2

1=···=s
np
p =σ

= 1. (4.10)

In writing (4.9), we have made it clear that that the (un)renormalized vertex function is to be
thought of as depending on the (un)renormalized couplings.

Now, although we have used the condition (4.10) on �OR to define ZO, the same
multiplicative renormalization also renders

GOR(t; {λRjk}, σ ) = ZOGO(t; {λjk}) (4.11)

finite, for t > 0, where GO is defined in (4.5). For this to be true, it is important that the fields
φj

(
t, rνj

j

)
are not evaluated at the same point. This would lead to further UV divergences.

However, these occur on a set of measure zero in the integration in (4.5) and are harmless.

4.3. Callan–Symanzik equation for GO

Define the RG functions

βjk(gRjk) = σ

(
∂gRjk

∂σ

)
{λjk,Dj }

(4.12)

and

γO({gRjk}) =
(

σ
∂

∂σ
ln ZO({λjk}, σ )

)
{λjk}

. (4.13)

The fact that σ(∂/∂σ)GO|{λjk} = 0 then implies the Callan–Symanzik equationσ
∂

∂σ
− γO({gRjk}) +

∑
1�j<k�p

βjk(gRjk)
∂

∂gRjk

GOR(t, {gRjk}, σ ) = 0. (4.14)

If the couplings {gRjk} flow towards a nontrivial fixed point {g∗
Rjk} at which βjk(g

∗
Rjk) = 0

(as we shall show happens for d < 2), then in estimating the leading asymptotic behaviour as
σ → ∞ it is sufficient to replace (4.14) by(

σ
∂

∂σ
− γ ∗

O

)
GOR(t, σ ) = 0 (4.15)

where γ ∗
O = γO({g∗

Rjk}). This has the solution GOR(t, σ ) ∝ σγ ∗
O , as σ → ∞ at fixed t.

However, simple dimensional analysis implies that GOR(t, σ ) is function of only the
combination (σ t). Hence we find that

GOR(t, σ ) ∼ const t−α (4.16)

with

α = −γ ∗
O. (4.17)
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ΓO = +

j

+
j

1

2

Figure 3. One-loop diagrams for �O.

4.4. β-functions

From (4.2) and (4.4), we find after some algebra (see appendix A)

βjk(gRjk) = − 1
2

(
εgRjk − bdg

2
Rjk

)
. (4.18)

Note that this is exact to all orders in gRjk , and that, for ε > 0, there is an infrared stable fixed
point at

g∗
Rjk = ε/bd = 4πε + O(ε2) (4.19)

whose value is independent of the diffusion constants.

4.5. One-loop calculation of γO

Consider the expansion of the vertex function (4.8) as a power series in the coupling constants
{λjk}. To first order, this is given by the sum of diagrams like that in figure 3, explicitly

�O = 1 −
∑

1�j1<j2�p

nj1nj2λj1j2I1
(
s
µ

j1
, sν

j2
; Dj1,Dj2

)
+ O
({

λ2
jk

})
(4.20)

where the integral I1
(
s
µ

j1
, sν

j2
; Dj1 ,Dj2

)
is the same as occurs in the coupling constant

renormalization: see appendix A. The combinatorial factor nj1nj2 counts the number of ways
the walkers from family j1 can interact just once with those of family j2. The renormalization
constant ZO is then the inverse of this evaluated at the normalization point s

νj

j = σ . Thus

ln ZO =
∑

1�j1<j2�p

nj1nj2λj1j2

bd

ε

(
2

Dj1 + Dj2

)d/2

(2σ)−ε/2 + O
({

λ2
jk

})
(4.21)

and so, by (4.13)

γO = −1

2

∑
1�j1<j2�p

nj1nj2λj1j2bd

(
2

Dj1 + Dj2

)d/2

(2σ)−ε/2 + O
({

λ2
jk

})
= −1

2

∑
1�j1<j2�p

nj1nj2 × bdgRj1j2 + O
({

g2
Rjk

})
. (4.22)

Next we set gRj1,j2 = g∗. By (4.19),

γ ∗
O = −1

2

∑
1�j1<j2�p

nj1nj2ε + O(ε2). (4.23)

Through (4.17), this gives the result (2.3) up to O(ε). We remark that to this order the
result is independent of the diffusion constants, as long as no pair Dj1 + Dj2 vanishes. This
last is of course a pathological case, since then the two families are immobile and cannot
meet.
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+
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Figure 4. Two-loop contributions to �O. Each diagram (with possible permutations of the labels)
corresponds to a term in (4.26).

4.6. Two-loop calculation

There are three types of diagrams contributing to �O at order λ2. They are illustrated in
figures 4(a)–(c). Contributions of types (a) and (b) involve the one-loop integrals I1 defined
above, while those of type (c) involve

I2
(
s
µ

j1
, sν

j2
, s

ρ

j3
; Dj1 ,Dj2 ,Dj3

)
=
∫ ∫

(ddq/(2π)d)(ddk/(2π)d){(
sν
j2

+ s
ρ

j3

)
+
(
Dj2 + Dj3

)
(k + q)2}{(sµ

j1
+ sν

j2
+ s

ρ

j3

)
+ Dj1 k2 + Dj2 q2 + Dj3(k + q)2

} .
(4.24)

Define

Î 1
(
σ ; Dj1 ,Dj2

) = I1
(
s
µ

j1
, sν

j2
; Dj1 ,Dj2

)∣∣
s
µ

j1
=sν

j2
=σ

Î 2
(
σ ; Dj1 ,Dj2 ,Dj3

) = I2
(
s
µ

j1
, sν

j2
, s

ρ

j3
; Dj1 ,Dj2 ,Dj3

)∣∣
s
µ

j1
=sν

j2
=s

ρ

j3
=σ

.
(4.25)

Then

Z−1
O = 1 −

∑
1�j1<j2�p

nj1nj2λj1j2 Î 1
(
σ ; Dj1 ,Dj2

)
+

∑
1�j1<j2�p

nj1nj2

(
λj1j2

)2(
Î 1
(
σ ; Dj1 ,Dj2

))2
+

∑
1�j1<j2<j3<j4�p

nj1nj2nj3nj4

{
λj1j2λj3j4 Î 1

(
σ ; Dj1 ,Dj2

)
Î 1
(
σ ; Dj3 ,Dj4

)
+ λj1j3λj2j4 Î 1

(
σ ; Dj1 ,Dj3

)
Î 1
(
σ ; Dj2 ,Dj4

)
+ λj1j4λj2j3 Î 1

(
σ ; Dj1 ,Dj4

)
Î 1
(
σ ; Dj2 ,Dj3

)}
+

∑
1�j1<j2<j3�p

{
nj1

(
nj1 − 1

)
nj2nj3λj1j2λj1j3 Î 1

(
σ ; Dj1 ,Dj2

)
Î 1
(
σ ; Dj1 ,Dj3

)
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+ nj1nj2

(
nj2 − 1

)
nj3λj1j2λj2j3 Î 1

(
σ ; Dj1 ,Dj2

)
Î 1
(
σ ; Dj2 ,Dj3

)
+ nj1nj2nj3

(
nj3 − 1

)
λj1j3λj2j3 Î 1

(
σ ; Dj1 ,Dj3

)
Î 1
(
σ ; Dj2 ,Dj3

)}
+

1

2

∑
1�j1<j2�p

nj1

(
nj1 − 1

)
nj2

(
nj2 − 1

)(
Î 1
(
σ ; Dj1 ,Dj2

))2
+

∑
1�j1<j2<j3�p

nj1nj2nj3

{
λj1j2λj2j3 Î 2

(
σ ; Dj1 ,Dj2 ,Dj3

)
+ λj1j2λj1j3 Î 2

(
σ ; Dj2 ,Dj1 ,Dj3

)
+ λj1j3λj2j3 Î 2

(
σ ; Dj1 ,Dj3 ,Dj2

)
+ λj1j3λj1j2 Î 2

(
σ ; Dj3 ,Dj1 ,Dj2

)
+ λj2j3λj1j3 Î 2

(
σ ; Dj2 ,Dj3 ,Dj1

)
+ λj2j3λj1j2 Î 2

(
σ ; Dj3 ,Dj2 ,Dj1

)}
+

∑
1�j1<j2�p

nj1

(
nj1 − 1

)
nj2

(
λj1j2

)2
Î 2
(
σ ; Dj1 ,Dj2 ,Dj1

)
+

∑
1�j1<j2�p

nj1nj2

(
nj2 − 1

)(
λj1j2

)2
Î 2
(
σ ; Dj2 ,Dj1 ,Dj2

)
+ O
({

λ3
jk

})
. (4.26)

Each term in this sum corresponds to a diagram of class (a) to (c3) in figure 4. The
combinatorial factors, polynomials in the nj , count the number of ways different walkers
from a given family can contribute to each of these processes. (It is simplest to check these
factors for small values of p and nj .) From appendix A

Î 1(σ ; Dj ,Dk) = bd

ε

(
2

Dj + Dk

)d/2

(2σ)−ε/2. (4.27)

Moreover, as shown in appendix B

Î 2(σ ; Dj ,Dk,D�) =
(

2

Dj + Dk

)d/2 ( 2

Dk + D�

)d/2

×
[

1

2ε2
− 1

4ε
ln R(Dj ,Dk,D�) + O(1)

]
b2

d(2σ)−ε (4.28)

where bd is given by (4.3) and R(Dj ,Dk,D�) is given by (2.6).
Next we compute ln ZO through O

({
λ2

jk

})
, perform the differentiation σ∂/∂σ at fixed

bare couplings λjk , then re-express the result as a series in the gRjk, to the same order. The
result has the form

γO({gRjk}) = B1 +
1

ε
B2b

2
d + B3 + O

({
g3

Rjk

})
(4.29)

with

B1 = −1

2

∑
1�j1<j2�p

nj1nj2bdgRj1j2

B2 = −1

2

∑
1�j1<j2�p

nj1nj2

(
gRj1j2

)2
+

∑
1�j1<j2�p

nj1nj2

(
gRj1j2

)2
+

∑
1�j1<j2<j3<j4�p

nj1nj2nj3nj4

(
gRj1j2gRj3j4 + gRj1j3gRj2j4 + gRj1j4gRj2j3

)
+

∑
1�j1<j2<j3�p

nj1nj2nj3

{(
nj1 − 1

)
gRj1j2gRj1j3 +

(
nj2 − 1

)
gRj1j2gRj2j3
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+
(
nj3 − 1

)
gRj1j3gRj2j3

}
+

1

2

∑
1�j1<j2�p

nj1

(
nj1 − 1

)
nj2

(
nj2 − 1

)(
gRj1j2

)2
+

∑
1�j1<j2<j3�p

nj1nj2nj3

(
gRj1j2gRj2j3 + gRj2j3gRj1j3 + gRj1j3gRj1j2

)

+
1

2

∑
1�j1<j2�p

nj1nj2

(
nj1 + nj2 − 2

)(
gRj1j2

)2 − 1

2

 ∑
1�j1<j2�p

nj1nj2gRj1j2

2

B3 = −1

2

∑
1�j1<j2<j3�p

nj1nj2nj3

{
gRj1j2gRj2j3 ln R

(
Dj1 ,Dj2 ,Dj3

)
+ gRj2j3gRj1j3 ln R

(
Dj2 ,Dj3 ,Dj1

)
+ gRj1j3gRj1j2 ln R

(
Dj3 ,Dj1 ,Dj2

)}
b2

d

− 1

4

∑
1�j1<j2�p

nj1nj2

{(
nj1 − 1

)
ln R

(
Dj1 ,Dj2 ,Dj1

)
+
(
nj2 − 1

)
ln R

(
Dj2 ,Dj1 ,Dj2

)}
b2

d

(
gRj1j2

)2
.

(4.30)

An important check of this calculation is that the double poles in ε in the two-
loop contributions are cancelled by the coupling constant renormalization in the one-loop
contributions. This has the consequence that γO({gRjk}) has a finite limit as ε → 0, that is B2

vanishes. This is shown in appendix C.
Now we set

gRjk = g∗
R = ε

bd

for all (j, k) (4.31)

following (4.19). Then we have

γ ∗
O = B∗

1 ε + B∗
3 ε2 + O(ε2) (4.32)

with

B∗
1 = −1

2

∑
1�j1<j2�p

nj1nj2

B∗
3 = −1

2

∑
1�j1<j2<j3�p

nj1nj2nj3

{
ln R

(
Dj1 ,Dj2 ,Dj3

)
+ ln R

(
Dj2 ,Dj3 ,Dj1

)
+ ln R

(
Dj3 ,Dj1 ,Dj2

)}− 1

4

∑
1�j1<j2�p

nj1nj2

{(
nj1 − 1

)
ln R

(
Dj1 ,Dj2 ,Dj1

)
+
(
nj2 − 1

)
ln R

(
Dj2 ,Dj1 ,Dj2

)}
= − 1

2

∑
1�j1<j2<j3�p

nj1nj2nj3 ln

( (
Dj1Dj2 + Dj1Dj3 + Dj2Dj3

)3(
Dj1 + Dj2

)2(
Dj2 + Dj3

)2(
Dj3 + Dj1

)2
)

−1

4

∑
1�j1<j2�p

nj1nj2

{
nj1 ln R

(
Dj1 ,Dj2 ,Dj1

)
+ nj2 ln R

(
Dj2 ,Dj1 ,Dj2

)}

+
1

4

∑
1�j1�j2�p

nj1nj2 ln

(
Dj1Dj2

(
Dj1 + 2Dj2

)(
2Dj1 + Dj2

)(
Dj1 + Dj2

)4
)

.

Through (4.17), this gives the result (2.3).
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4.7. Two dimensions

When d = 2 the couplings {gRjk} are marginally irrelevant, that is they flow logarithmically
slowly towards zero. In that case, it is not sufficient to set them equal to their fixed-point
values, but instead the full Callan–Symanzik equation (4.14) must be solved. Using the
fact that GOR(t, {gRjk}, σ ) depends on σ and t only through combination (σ t), this may be
rewrittent

∂

∂t
− γO({gRjk}) +

∑
1�j<k�p

βjk(gRjk)
∂

∂gRjk

GOR(t, {gRjk}, σ ) = 0. (4.33)

The solution by the method of characteristics is standard. Define running couplings {g̃jk(u)}
by

u
d

du
g̃jk(u) = −βjk(g̃jk(u)) (4.34)

with initial conditions g̃jk(1) = gRjk. Then

GOR(t, {gRjk}, σ ) = exp

{∫ σ t

1
γO({g̃Rjk})(du/u)

}
GOR(σ−1, {g̃jk(σ t)}, σ ). (4.35)

In our case,

g̃jk(u) = 1
1
2b2 ln u + g−1

Rjk

= 2

b2 ln u
+ O((ln u)−2) (4.36)

so that, using (4.22) the exponent in (4.35) is

ln ln(σ t)
∑

1�j1<j2�p

nj1nj2 + O((ln(σ t))−1). (4.37)

Exponentiating this yields the result quoted in (2.17). The dependence of the last factor in
(4.35) on {g̃jk(σ t)} also generates corrections which are down by O((ln(σ t))−1. All the
non-universal behaviour resides in these, and higher order, corrections. Note the absence
of corrections O(ln ln t/ ln t), which may be traced to the lack of higher-order terms in the
β-functions (4.18).

5. Discussion

We have presented a generalization of the vicious walker problem in which walkers from
different families annihilate on meeting, but walkers from the same family ignore each other.
We have studied the problem in a field-theoretic renormalization group framework, suitable
for understanding universal quantities such as critical exponents. We have focussed on the
probability that all walkers have survived up to time t, and we have showed that, in dimension
d < 2, this decays as a power, t−α({nj }), where nj is the number of walkers in the j th family.
While this result is true to all orders in ε ≡ 2 − d , the actual values of the exponents can, by
this method, be evaluated only as a power series in ε, which we have carried out to second
order. The coefficient of the O(ε2) term depends on the ratios of the diffusivities of each
family as well as the {nj }. The lack of dependence of the O(ε) term on this ratio may be traced
mathematically to the fact that the same bubble diagram enters into the coupling constant
renormalization (figure 5) and the renormalization of the composite operator O∗ (figure 3).

For the same reason, the exponent for N = 2 walkers does not depend on the ratio of
their diffusivities, because in this case the one-loop result is correct to all orders (as long as
we do not expand the coefficients in powers of ε). The same would be true, to first order for
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Figure 5. Diagrams renormalising λj1j2 .

N > k, and to all orders for N = k, if the two-body interactions we consider were generalized
to k-body interactions with k > 2, although in this case the upper critical dimension would be
reduced to dc(k) = 2/(k − 1).

The value of α({nj }) was shown to be related to the anomalous dimension of a
certain composite operator O∗

{nj } = ∏
j φ∗

j
nj . This structure means that our results can be

straightforwardly extended to other physical observables. For example, the reunion probability
R(t) that all the walkers have survived up to time t and are all located within a distance
O(b) � t1/2 of each other (where b is, for example, the lattice spacing), is related to a
correlation function

R(t) ∼
∫

〈O(t, r)O∗(0, 0)〉 ddr (5.1)

where O ≡ ∏
j φ

nj

j . Since the theory is symmetric under (t → −t, φj ↔ φ∗
j ), O has the

same anomalous dimension as O∗. Hence

R(t) ∼ const t−(N−1)(d/2)−2α({nj }) (5.2)

where the first term in the exponent comes from simple power counting, and the factor of 2
in the second reflects the important fact that the anomalous scaling of composite operators at
different times (and points) is multiplicative.

The fact that O∗
{nj } is symmetric under permutations of the families j = 1, . . . , p has

the important consequence that the exponents α({nj }) are also symmetric. The form of the
ε-expansion implies that this is true to all orders in ε. It may be traced to the operator product
expansion (3.18): the next-to-leading terms on the right-hand side, which do not vanish on
integration over the spatial coordinates must contain at least two derivatives, for example,

(∇φ1 · ∇φ2)φ
n1−1
1 φ

n2−1
2

∏
3�j�p

φ
nj

j . (5.3)

Power counting shows that, at d = 2, the contribution of such terms is at least O(t−1)

down on the leading term, and therefore, for sufficiently small ε, they yield only corrections
to the leading behaviour which we have computed. However, since each term in (3.18) is
renormalized separately, each gives rise to an independent scaling exponent. It is a very
interesting question whether the first term in the OPE is dominant all the way down to d = 1.
Such a result would imply that the asymptotic exponents (but not necessarily the prefactors) for
the cases {n1, n2, n3} = {2, 1, 1} and {1, 2, 1}, for example, are equal. Yet, in one dimension,
the two problems are certainly not isomorphic, because the ordering of the families along the
real line makes a difference. A very similar situation occurs in the problem of intersections of
families of Brownian paths in two dimensions: in that case the exponents have been computed
exactly [12, 13] and are known to be symmetric, despite the fact that the ordering of the families
around the annulus is a priori relevant. In this example, this symmetry is also suggested by the
ε-expansion below the upper critical dimension, in this case dc = 4 [11]. However, a recent
result of Bray and Blythe [18] suggests that the situation in d = 1 is not so straightforward
for our problem. In their equation (4) they report a result for the survival exponent for a
single lamb, with diffusion constant D′, with NL lions to the left and NR lions to the right.
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The diffusion constant of the lions is D, and their result is an expansion to first order in D′/D.
It is reported to depend on the asymmetry NL − NR as well as the sum NL + NR , while our
analysis shows that it should depend only on the sum, to all orders in the ε-expansion.

There are at least two possible resolutions:

1. the qualitative conclusions of the ε-expansion break down in d = 1, either because the
non-leading terms in the OPE dominate, or through some more systemic failure;

2. for d = 1 there is a qualitative difference between the case when walkers if different
families strictly cannot pass each other, and that, more appropriate to the field theory
approach, when the annihilation rate is finite and, therefore, the order along the real line
is not preserved.

In any case, it may be shown, by generalizing the arguments of Krapivsky and Redner
[7–9], that for infinite annihilation rate in d = 1 the exponents α({nj }) (and indeed all the
non-leading exponents), are simply related to the eigenvalues of the Dirichlet problem in a
certain compact region consisting of a spherical hyperpolygon on the sphere SN−2. Thus, if
the postulated symmetry were to hold, it would imply that the Laplacians in different regions
which are related by permutations of the {nj } are isospectral. We plan to address this question
in a future publication.
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Appendix A. Coupling constant renormalization

The diagrams contributing to �
(2,2)
j1j2

are shown in figure 5. In (s, q) space they give a geometric
sum. We have therefore the exact result

�
(2,2)
j1j2

((
s′
j1
, q′

j1

)
,
(
s ′
j2
, q′

j2

); (sj1 , qj1

)
,
(
sj2 , qj2

)) = λj1j2

1 + λj1j2

∫
ddk

(2π)d
1

s+Dj1 k2+Dj2 (q−k)2

(A.1)

where s ≡ s′
j1

+ s′
j2

= sj1 + sj2 and q ≡ q′
j1

+ q′
j2

= qj1 + qj2 . The renormalized coupling is
the value of this at s′

j1
= s′

j2
= sj1 = sj2 = σ and q′

j1
= q′

j2
= qj1 = qj2 = 0. Thus

λRj1j2 = λj1j2

1 + λj1j2 Î 1
(
σ ; Dj1 ,Dj2

) (A.2)

where

Î 1
(
σ ; Dj1 ,Dj2

) =
∫

ddk

(2π)d

∫ ∞

0
dα e−α(2σ+(Dj1 +Dj2 )k2) (A.3)

= 1

(2π)d

(
π

Dj1 + Dj2

)d/2 ∫ ∞

0
dαα−d/2e−α(2σ ) (A.4)

= �(1 − d/2)

23d/2πd/2

(
2

Dj1 + Dj2

)d/2

(2σ)−ε/2. (A.5)
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The dimensionless coupling (4.4) is then given as

gRj1j2 =
λj1j2

(
2

Dj1 + Dj2

)d/2

(2σ)−ε/2

1 +
bd

ε
λj1j2

(
2

Dj1 + Dj2

)d/2

(2σ)−ε/2

. (A.6)

Thus

λj1j2

(
Dj1 + Dj2

2

)−d/2

(2σ)−ε/2 = gRj1j2

1 − gRj1j2

bd

ε

. (A.7)

Differentiating this equation with respect to σ at fixed
(
λj1j2 ,Dj1 ,Dj2

)
and using the definition

of the β-function (4.12)

(−ε/2)
gRj1j2

1 − gRj1j2
bd

ε

=
(

1

1 − gRj1j2
bd

ε

)2

βj1j2

(
gRj1j2

)
. (A.8)

That is

βj1j2

(
gRj1j2

) = − 1
2

(
εgRj1j2 − bdg

2
Rj1j2

)
. (A.9)

Appendix B. The integral Î2

At the normalization point, the two-loop diagram figure 4(c) leads to the integral

Î 2(σ ; D1,D2,D3)

=
∫

ddq

(2π)d

∫
ddk

(2π)d

1

(2σ + (D2 + D3)k2)(3σ + D1q2 + D2(k + q)2 + D3k2)
.

(B.1)

As usual, the denominators may be combined using a Feynman parameter integration over x:

Î 2(σ ; D1,D2,D3)

=
∫ 1

0
dx

∫
ddq

(2π)d

∫
ddk

(2π)d

1

((D2 + D3)k2 + x(D1 + D2)q2 + 2xD2k · q)2
.

(B.2)

The wave number integrals are now standard, and yield

Î 2 = πd

(2π)d
�(2 − d)(D1 + D2)

−d/2(D2 + D3)
−d/2σd−2 × J (B.3)

where

J =
∫ 1

0
dxx−d/2(2 + x)d−2

(
1 − xD2

2

(D1 + D2)(D2 + D3)

)−d/2

. (B.4)

This has a simple pole at d = 2, arising from the end point at x = 0. However, we also have
to extract the finite part. This may be done by writing J = J1 + J2 where

J1 =
∫ 1

0
dxx−d/22d−2 = 2

ε
2d−2 (B.5)
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J2 =
∫ 1

0
dxx−d/2

[
(2 + x)d−2

(
1 − xD2

2

(D1 + D2)(D2 + D3)

)−d/2

− 2d−2

]
. (B.6)

The second integral is finite at d = 2:

J2 =
∫ 1

0

d x

x

[(
1 − xD2

2

(D1 + D2)(D2 + D3)

)−1

− 1

]
+ O(ε)

= − ln R(D1,D2,D3) + O(ε) (B.7)

where

R(D1,D2,D3) ≡ D1D2 + D2D3 + D1D3

(D1 + D2)(D2 + D3)
. (B.8)

Recalling the definition (4.3) of bd , we therefore find, after some algebra,

Î 2

b2
d

=
(

2

D1 + D2

)d/2 ( 2

D2 + D3

)d/2

(2σ)−ε

[
1

2ε2
− 1

4ε
ln R + O(1)

]
(B.9)

which leads directly to (4.28). It should be remarked that a crucial simplification in this
calculation arises because

�(2 − d)

�(1 − d/2)2
= ε

4
(1 + O(ε2)). (B.10)

Appendix C. Verification that B2 = 0

By (4.30),

B2 = 1

2

∑
1�j1<j2�p

nj1nj2

(
gRj1j2

)2
+

∑
1�j1<j2<j3<j4�p

nj1nj2nj3nj4

(
gRj1j2gRj3j4 + gRj1j3gRj2j4 + gRj1j4gRj2j3

)
+

∑
1�j1<j2<j3�p

nj1nj2nj3

(
nj1gRj1j2gRj1j3 + nj2gRj1j2gRj2j3 + nj3gRj1j3gRj2j3

)
−

∑
1�j1<j2<j3�p

nj1nj2nj3

(
gRj1j2gRj1j3 + gRj1j2gRj2j3 + gRj1j3gRj2j3

)
+

1

2

∑
1�j1<j2�p

n2
j1
n2

j2

(
gRj1j2

)2 − 1

2

∑
1�j1<j2�p

nj1nj2

(
nj1 + nj2

)(
gRj1j2

)2
+

1

2

∑
1�j1<j2�p

nj1nj2

(
gRj1j2

)2
+

∑
1�j1<j2<j3�p

nj1nj2nj3

(
gRj1j2gRj2j3 + gRj2j3gRj1j3 + gRj1j3gRj1j2

)
+

1

2

∑
1�j1<j2�p

nj1nj2

(
nj1 + nj2

)(
gRj1j2

)2

−
∑

1�j1<j2�p

nj1nj2

(
gRj1j2

)2 − 1

2

 ∑
1�j1<j2�p

nj1nj2gRj1j2

2
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=
∑

1�j1<j2<j3<j4�p

nj1nj2nj3nj4

(
gRj1j2gRj3j4 + gRj1j3gRj2j4 + gRj1j4gRj2j3

)
+

∑
1�j1<j2<j3�p

nj1nj2nj3

(
nj1gRj1j2gRj1j3 + nj2gRj1j2gRj2j3 + nj3gRj1j3gRj2j3

)

+
1

2

∑
1�j1<j2�p

n2
j1
n2

j2

(
gRj1j2

)2 − 1

2

 ∑
1�j1<j2�p

nj1nj2gRj1j2

2

= 0. (C.1)
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